ALMOTION

NSK Linear Guide[™] High-Accuracy Series: HA/HS Models

Suitable for equipment ranging from machine tools to high-precision instruments—high-performance linear guides with premier motion accuracy

ALMOTION

High motion accuracy, high rigidity, high load capacity realized NSK Linear Guide "High-Accuracy Series HA Model and HS Model"

Trends toward higher performance and enhanced quality of electronics equipment and precision instruments have been accelerating. At the same time, demand has been growing for highly precise production systems that manufacture such equipment and instruments. High-Accuracy Series achieves high motion accuracy, high rigidity and high load capacity while reducing frictional resistance.

"The High-Accuracy Series" is available for machine tools such as machining centers and high-precision lathes, as well as for high-precision instruments for manufacturing semi-conductors and liquid crystal displays, among other applications, all of which are required to meet the ever-increasing demand for higher accuracy. These linear guides are therefore well-suited for a broad variety of machinery and equipment that are expected to deliver high-level performance.

1. High motion accuracy

High motion accuracy is achieved in both narrow and wide ranges by adopting ultra-long ball slides and optimum design features for the ball recirculation component.

2. Ball passage vibration reduced to one-third of our conventional models

Tests show ball passage vibration has been reduced to one-third of our conventional models, dramatically improving table straightness.

3. Installation of rail with greater accuracy

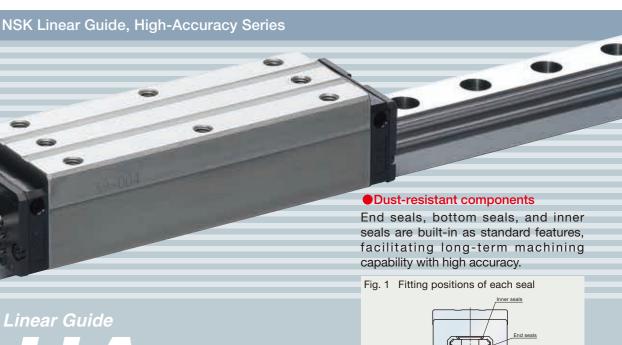
Increased counterbore depth of the rail mounting hole reduces rail deflection, which is caused by bolt tightening when fixing the rail to the base component, to 50% or less. This feature restrains the pitching motion of ball slide whose frequency matches to the mounting hole pitch. In addition, the length of mounting hole pitch has been reduced by onehalf of the conventional models, so the rail can be more accurately installed in position.

4. High rigidity and load capacity with lower friction

High rigidity, high load capacity and low friction are achieved by increasing the number of balls.

5. Compact design

Reduced body size enables more compact machinery.


Linear Guide

Linear Guide

Table 1 Examples of High-Accuracy Series applications (based on actual results)

Application	Adverse effects from ball passage vibration	Advantages of High-Accuracy Series
Machining center, grinding machine, dicer, and slicer	Poor finish of worked surface	 Ultra-long ball slides control posture changes which may be caused by ball passage
Coater (linear motion type)	Uneven coated surface of resist	 vibration and rail waviness. Optimum design of ball recirculation components
Plastics processing equipment	Flaw nearly twice as large as ball diameter in pitch occurs in worked surface	 enables the ball to move smoothly and restrain ball passage vibration. Deep counterbore of mounting hole for rail
High-precision table	Deterioration in motion accuracy of table	contributes to reducing possible rail deformation and restricting pitching motion.

High-Accuracy Series: HA/HS Models

HA Model applications

The HA Model linear guides feature improved dust resistance and are ideal for such machines as machining centers, highprecision lathes and grinding machines, for which higher motion accuracy is required.

In addition, they are suitable for discharge machines because of their low friction and high rigidity.

Low friction, compact size

Dust-resistant components

As standard equipment, the ball slides have an end seal on both ends.

Stainless steel models are also available In order to flexibly meet a variety of needs. stainless steel models that are highly resistant to corrosion are also optionally available.

HS Model applications

The HS Model linear quides place special emphasis on lower frictional resistance and compactness and are therefore best suited for dicers, slicers and various manufacturing devices for semi-conductors and liquid crystal displays, for which highgrade accurate surface finish operations are required, including measuring instruments for making highly accurate measurements.

Test results of ball passage vibration

Ball passage vibration can translate into posture changes in the ball slide which result from ball passage (circulation). In the High-Accuracy Series, this vibration has been substantially reduced to one-third of conventional models.

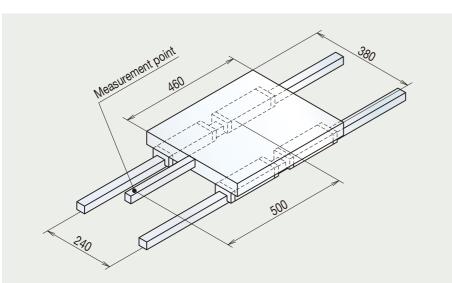
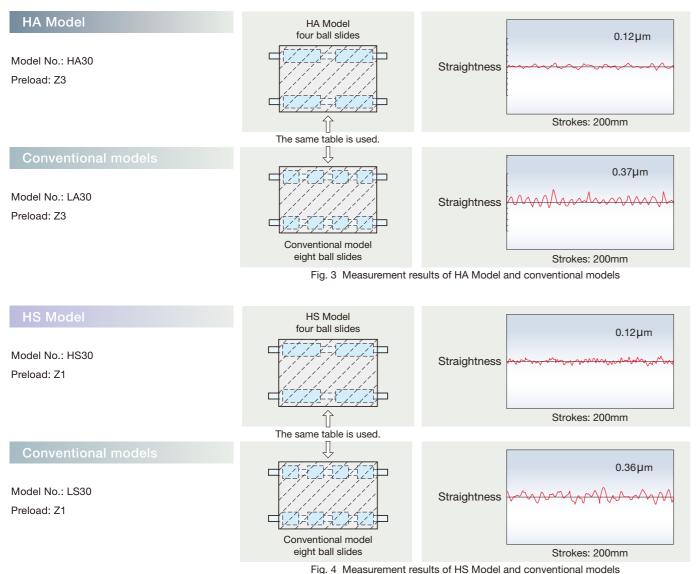
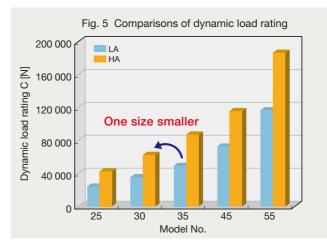
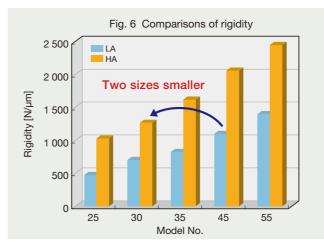



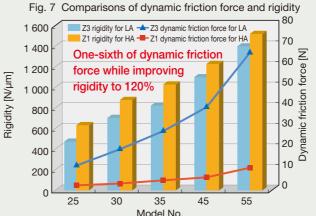
Fig. 2 Schematic view of measurement of ball passage vibration

High rigidity and high load capacity with low friction

Substantially increasing the number of balls in both HA Model and HS Model achieves higher rigidity and load capacity as well as reduced frictional resistance, compared to our conventional models.


HA Model

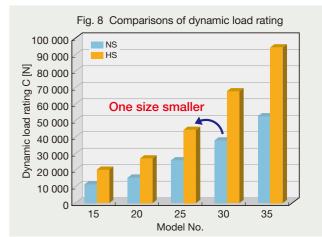

For example, comparing HA Model with our conventional LA35,

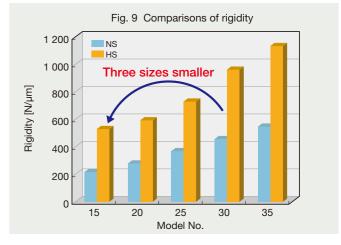

• HA30 : the same dynamic load rating, at one size smaller (Fig. 5)

• HA25 : the same rigidity, at two sizes smaller (Fig. 6)

• HA35 : 120% higher rigidity with one-sixth friction (Fig. 7)

3 NSK


Almotion B.V Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t+31(0) 491 777 e info@almotion.nl


www.almotion.nl | www.lineairegeleiding.nl | www.lineairegeleidingshop.nl | www.linearmotion.nl


High-Accuracy Series: HA/HS Models

For example, comparing HS Model with our conventional NS30,

- HS25 : the same dynamic load rating, at one size smaller (Fig. 8)
- HS15 : the same rigidity, at three sizes smaller (Fig. 9)
- HS30 : 110% higher rigidity with one-fifth friction (Fig. 10)

NSK 4

Accuracy standard and preload

Three accuracy grades are available: ultra precision P3, super precision P4, and high precision P5. Slight preload Z1 and medium preload Z3 are available for preload. Those can be selected for applications.

Unit: µm

Unit: µm

Table 2 Accuracy standard

-			
Accuracy grade	Ultra precision P3	Super precision P4	High precision P5
Mounting height H	±8	±10	±20
Variation of height H	3	5	7
(All ball slides on a set of rails)			
Mounting width W_2 or W_3	±10	±15	±25
Variation of W_2 or W_3	3	7	10
(All ball slides on reference rail)			
Running parallelism of surface C to surface A	Refer to	Table 3 for tol	erance.
Running parallelism of surface D to surface B	See Fig	. 11 and Fig.12	

Accuracy grade Rail length (mm)	P3	P4	P5
over-200 or less	2	2	3.5
200-250	2	2.5	4.5
250-315	2	2.5	5
315-400	2	3	5.5
400-500	2	3	6
500-630	2	3.5	6.5
630-800	2	4	7
800-1 000	2.5	4.5	7.5
1 000-1 250	3	5	8.5
1 250-1 600	3.5	5.5	9.5
1 600-2 000	4	6.5	11
2 000-2 500	4.5	7.5	12
2 500-3 150	5.5	8.5	13
3 150-4 000	6	9.5	14

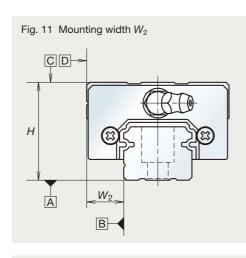
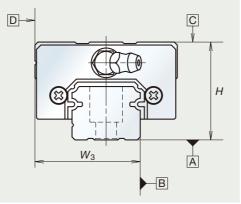
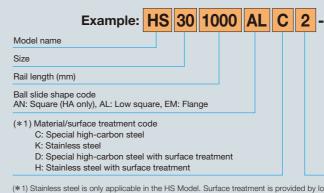



Fig. 12 Mounting width W_3

Table 4 Preload and rigidity

	Preloa	ad (N)	Rigidity	' (N/μm)				
Model No	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)				
HA25	735	2 990	635	1 030				
HA30	1 030	4 400	880	1 270				
HA35	1 470	6 100	1 030	1 620				
HA45	1 960	8 150	1 230	2 060				
HA55	3 150	13 100	1 520	2 450				

* The rigidity of the HA Model is the same in the vertical direction and the horizontal direction.


HS Model

	Preloa	ad (NI)		Rigidity	(N/μm)	
Model No.	FIEIO		Vertical	direction	Lateral of	direction
model No.	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)	Slight preload (Z1)	Medium preload (Z3)
HS15	98	785	260	530	173	355
HS20	147	1 030	305	600	212	415
HS25	245	1 620	385	735	263	505
HS30	390	2 550	505	965	345	665
HS35	590	3 550	610	1 140	415	780

Reference number

Reference numbers shall be set to individual when its specifications are finalized, and it is indicated on its specification drawing.

Please specify the reference number, except design serial number, to identify the product when requiring estimates, or inquiring about specifications.

(*1) Stainless steel is only applicable in the HS Model. Surface treatment is provided by low temperature chrome plating (electrolytic rust prevention black treatment). In addition, low temperature chrome plating treatment that further improves anticorrosion properties by means of fluoroplastic coating is also available as an option.

Long-term, maintenance-free operation

The NSK K1 lubrication unit for HA model and the NSK K1-L lubrication unit for HS Model can be installed to ensure long-term, maintaenance-free operation.

Table 5 Dimensions of linear guides equipped with NSK K1 lubrication unit for HA Model

	in labiloadie		modol	Unit: mm
Model No.	Standard ball slide length	Ball slide length with two NSK K1 installed L	Thickness of single NSK K1 V ₁	Protective cover thickness V ₂
HA25	147.8	159.8	5.0	1.0
HA30	177.2	190.2	5.5	1.0
HA35	203.6	216.6	5.5	1.0
HA45	233.4	248.4	6.5	1.0
HA55	284.4	299.4	6.5	1.0

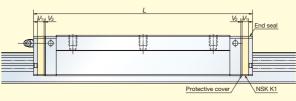
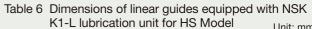



Fig. 13 Ball slide equipped with NSK K1 for HA Model

Slide length when equipped with NSK K1 = (standard ball slide length) + (V_1 thickness of single K1 unit) × (number of K1 units) + (V_2 thickness of the protective cover) \times 2.

- The temperature of the place where linear guides are used should not exceed 80°C.
- •When installing NSK K1 or NSK K1-L, the temperature of the place where linear guides are used should not
- leaving it in white kerosene or rust preventive oil that contains white kerosene.

່ງເ		
		Preload code 1: Slight preload 3: Medium preload
	Accuracy code	
	Without NSK K1/K1-L	P3: Ultra precision, P4: Super precision, P5: High precision
	With NSK K1	K3: Ultra precision, K4: Super precision, K5: High precision
	With NSK K1-L	L3: Ultra precision, L4: Super precision, L5: High precision
		Design serial number
		Without NSK K1/K1-L With NSK K1

			Onit. mini
Model No.	Standard ball slide length	Ball slide length with two NSK K1-L installed L	Thickness of single NSK K1-L V ₁
HS15	106	115.6	4.8
HS20	119.7	130.3	5.3
HS25	148	158.6	5.3
HS30	176.1	188.1	6
HS35	203.6	216.6	6.5

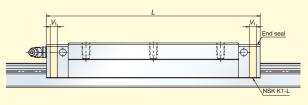
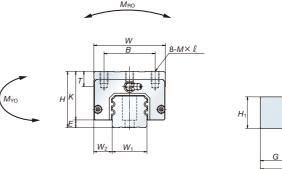


Fig. 14 Ball slide equipped with NSK K1-L for HS Model

Slide length when equipped with NSK K1-L = (standard ball slide length) + (V1 thickness of single NSK K1-L unit) × (number of K1-L units).


Precautions for proper use and handling

• Balls fall out if the ball slide is removed from the rail. Also note that the ball slide may fall off as the rail is inclined. •When using the ball slide in an upside-down state (e.g. the rail is installed upside-down on the ceiling in which the ball slide faces downward), take measures including installing a safety device to prevent falling.

exceed 50°C (80°C, instantaneous). Please avoid contacting NSK K1 with organic solvent that remove oil or

ALMOTION

Fig. 15 AN Type

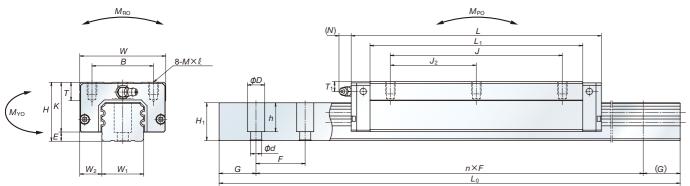
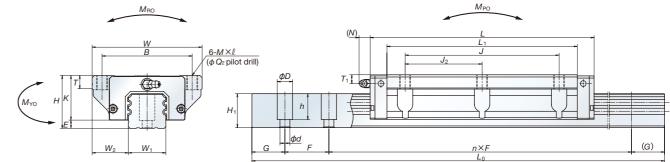



Fig. 16 EM Type

Table 6 Asse	Table 6 Assembly dimensions for AN Type and AL Type Assembly Ball slide Rail Basic load rating Weight															Unit: mm															
	A	ssemb	oly						Ball slide										Rail					Ba	asic load	rating				We	ight
Model No.	Height			Width	Length			Mounti	ng hole				Grease	e fitting	J	Width	Height	Pitch	Mounting	G	Maximum	²⁾ Dyn	amic	Static		Static	moment	(N·m)		Ball	Rail
Woder No.																			bolt hole		length	[50km]	[100km]	C_0	M _{RO}	M	PO	M	YO	slide	
	Н	E	W ₂	W	L	В	J	J_2	M×pitch×ℓ	L_1	K	T	Hole size	<i>T</i> ₁	Ν	<i>W</i> ₁	H_1	F	d×D×h	(reference)	L _{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
HA25AN	40	5.5	12.5	48	147.8	35	100	50	M6×1×10	126	34.5	12	M6×0.75	10	11	23	22	30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.2	3.7
HA30AN	45	7.5	16	60	177.2	40	120	60	M8×1.25×11	149	37.5	14	M6×0.75	9.5	11	28	28	40	9×14×21	20	4 000	79 500	63 500	166 000	1 1 4 0	3 550	17 400	3 550	17 400	1.8	5.8
HA35AN	55	7.5	18	70	203.6	50	140	70	M8×1.25×12	170	47.5	15	M6×0.75	15	44	34	30.8	40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.0	7.7
HA35AL	48	1.5	10	70	203.0	50	140		M8×1.25×10	1/3	40.5	15	1010 ~ 0.75	8	11	34	30.0	40	9~14~23.5	20	4 000	111 000	00 000	220 000	1 950	5 050	27 100	5 650	27 100	2.6	1.1
HA45AN	70	10	00 5	00	000.4	<u> </u>	100	80		107	60	17		20	10	45	00	50.5	14×20×27	22.5	2 000	147 000	117 000	295 000	3 700	8 450	40 500	0 450	40 500	6.0	10.0
HA45AL	60	10	20.5	80	233.4	60	160	80	M10×1.5×16	197	50		Rc1/8	10	13	45	36	52.5	14~20~27	22.5	3 990	147 000	117 000	295 000	3700	0 4 3 0	40 500	6 4 3 0	40 500	5.0	12.0
HA55AN	80	10	00 E	100	004.4	75	006	102	M12×1.75×18	245	68	18		21	10	50	40.0	60	16×02×02 E	20	2.060	000 000	104 000	115 000	6 500	15 400	75.000	15 400	75.000	9.4	17.0
HA55AL	70	12	23.5	100	284.4	75	206	103	M12×1.75×16	245	58	18	Rc1/8	11	13	53	43.2	00	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	7.8	17.2

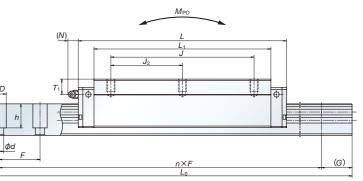
Notes: 1) The HA Model does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)
 C₅₀: the basic dynamic load rating for 50 km rated fatigue life C₁₀₀: the basic dynamic load rating for 100 km rated fatigue life

Table 7 Asse	mbly o	dimens	ions fo	or EM	Туре																											Unit: mm
	Assembly Ball slide Grease fitting W Height Width Length Mounting hole Grease fitting W																		Rail					Ba	asic load	rating				We	eight	
Model No.	Height			Width	Length			Μοι	unting hole					Grease	e fitting	J	Width	Height	Pitch	Mounting	G	Maximum		amic	Static		Static	moment	(N·m)		Ball	
Model No.																	1			bolt hole		length	[50km]	[100km]	C_0	M _{RO}	M	20	M	I _{YO}	slide	
	H	E	<i>W</i> ₂	W	L	B	J	J_2	M×pitch×ℓ	Q ₂	L ₁	K	T	Hole size	<i>T</i> ₁	Ν	W_1	H_1	F	d×D×h	(reference)	L _{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
HA25EM	36	5.5	23.5	70	147.8	57	100	50	M8×1.25×10	6.8	126	30.5	11	M6×0.75	6	11	23	22	30	7×11×16.5	20	3 960	54 000	43 000	115 000	670	2 060	10 100	2 060	10 100	1.6	3.7
HA30EM	42	7.5	31	90	177.2	72	120	60	M10×1.5×12	8.6	149	34.5	11	M6×0.75	6.5	11	28	28	40	9×14×21	20	4 000	79 500	63 500	166 000	1 1 4 0	3 550	17 400	3 550	17 400	2.6	5.8
HA35EM	48	7.5	33	100	203.6	82	140	70	M10×1.5×13	8.6	173	40.5	12	M6×0.75	8	11	34	30.8	40	9×14×23.5	20	4 000	111 000	88 000	226 000	1 950	5 650	27 100	5 650	27 100	3.8	7.7
HA45EM	60	10	37.5	120	233.4	100	160	80	M12×1.75×15	10.5	197	50	13	Rc1/8	10	13	45	36	52.5	14×20×27	22.5	3 990	147 000	117 000	295 000	3 700	8 450	40 500	8 450	40 500	6.6	12.0
HA55EM	70	12	43.5	140	284.4	116	206	103	M14×2×18	12.5	245	58	15	Rc1/8	11	13	53	43.2	60	16×23×32.5	30	3 960	232 000	184 000	445 000	6 500	15 400	75 000	15 400	75 000	11	17.2

Notes: 1) The HA Model does not have a ball retainer. Be aware that the balls fall out when a ball slide is withdrawn from the rail.

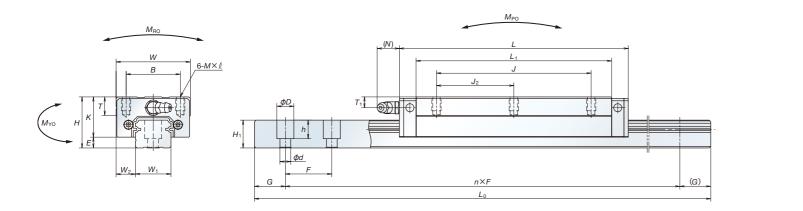
7 NSK


 e rail.
 2) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2)

 C50: the basic dynamic load rating for 50 km rated fatigue life
 C100: the basic dynamic load rating for 100 km rated fatigue life

 Almotion B.V Nijverheidsweg 14
 6662 NG Elst (Gld)
 The Netherlands
 t+31(0) 491 777
 e info@almotion.nl

 www.almotion.nl | www.lineairegeleiding.nl | www.lineairegeleidingshop.nl | www.linearmotion.nl


High-Accuracy Series: HA/HS Models

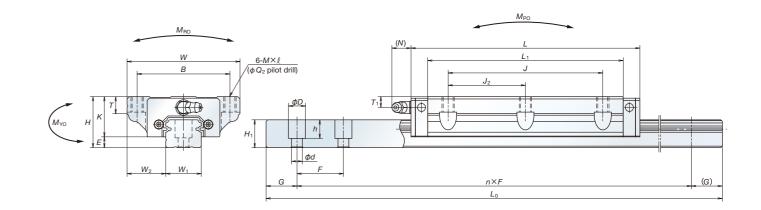


Fig. 17 AL Type

Fig. 18 EM Type

Table 8 Asse	embly d	limens	sions fo	or AL 7	Гуре																										Unit: mm	
	A	ssemb	oly						Ball slide										Rail					Ba	asic load	rating				We	Weight	
Model No.	Height			Width	Length			Moun	ting hole				Grease	e fitting	J	Width	Height	Pitch	Mounting	G	Maximum		amic	Static		Static	moment	(N·m)		Ball slide	Rail	
model No.																			bolt hole		length	[50km]	[100km]	C_0	M _{RO}	M		M				
	H	E	<i>W</i> ₂	W	L	B	J	<i>J</i> ₂	M×pitch×ℓ	L_1	K	T	Hole size	T ₁	Ν	<i>W</i> ₁	H_1	F	d×D×h	(reference)	Uniax	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)	
HS15AL	24	4.6	9.5	34	106	26	60	30	M4×0.7×6	89.2	19.4	10	φ3	6	3	15	12.5	30	*4.5×7.5×8.5 3.5×6×8.5	20	2 000 (1 300)	20 500	16 300	40 000	199	395	1 990	335	1 670	0.34	1.4	
HS20AL	28	6	11	42	119.7	32	80	40	M5×0.8×7	102.5	22	12	M6×0.75	5.5	11	20	15.5	30	6×9.5×10.5	20	3 960 (3 500)	27 300	21 600	52 000	350	590	2 930	495	2 460	0.52	2.3	
HS25AL	33	7	12.5	48	148	35	100	50	M6×1×9	126.4	26	12	M6×0.75	7	11	23	18	30	7×11×12	20	3 960 (3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	0.85	3.1	
HS30AL	42	9	16	60	176.1	40	120	60	M8×1.25×12	150.7	33	13	M6×0.75	8	11	28	23	40	7×11×16	20	4 000 (3 500)	68 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	1.7	4.8	
HS35AL	48	10.5	18	70	203.6	50	140	70	M8×1.25×12	175.6	37.5	14	M6×0.75	8.5	11	34	27.5	40	9×14×20	20	4 000 (3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	2.5	7.0	

Notes: 1) The HS Model does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail. 2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) C_{50} : the basic dynamic load rating for 50 km rated fatigue life C_{100} : the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.

naiona far EM T معنام بالمامعي

	A second by Della lide																Dell			Desis la sel astis a									Ladat			
Model No.	A	ssemb	ly	Ball slide											Rail						Basic load rating								Weight			
	Height			Width	Length	Mounting hole								Grease fitting		Width Height Pit		Pitch	Mounting	G	Maximum	³⁾ Dynamic		Static		Static moment (N·m)				Ball slide	Rail	
					_						1						1			bolt hole		length	[50km]	[100km]	C_0	$M_{\rm BO}$	M _F	0	M	YO	slide	
	Н	Ε	W_2	W	L	В	J	J_2	M×pitch×ℓ	Q ₂	L ₁	K	Т	Hole size	T ₁	N	W_1	H_1	F	d×D×h	(reference)	L _{0max}	$C_{50}(N)$	C ₁₀₀ (N)	(N)		One slide	Two slides	One slide	Two slides	(kg)	(kg/m)
HS15EM	24	1.6	18.5	52	106	14	60	30	M5×0.8×7	4.4	89.2	19.4	0	40	6	2	15	12.5	20	*4.5×7.5×8.5	20	2 000	20 500 16 300	40 000	199	395	1 000	335	1 670	0.45	1 4	
	24	4.0	10.5	52	106	41	60	30	1/ ^0.0 / CIVI	4.4	09.2	19.4	0	φ3	0	3	15	12.5	30	3.5×6×8.5	20	(1 300)	20 500	10 300	40 000	199	395	1 990	335	1070	0.45	1.4
HS20EM	00	6	19.5	59	119.7	40	80	40	M6×1×9	F 0	100 5	00	10	M6×0.75			20	15.5	30	6×9.5×10.5	20	3 960	27 300	21 600	52 000	350	590	2 930	495	2 460	0.67	0.0
	28	6			119.7	49	00		(M6×1×9.5)	5.3	102.5	22	10	10/0.75	5.5	11	20	15.5		0^9.3^10.3	20	(3 500)	27 300	21000	52 000							2.3
HS25EM	33	7	25	70	148	60	100	50	M8×1.25×10	6.0	100.4	00	11 (12)		7	44	23	18	30	7×11×10	20 3	3 960	44 500	05 000	70.000	005	1 000	E 450	010	4 000	10	0.1
			25	73				50	(M8×1.25×11.5)	0.8	126.4	26		M6×0.75		11				7×11×12	20	(3 500)	44 500	35 000	78 000	605	1 090	5 450	910	4 600	1.3	3.1
HS30EM	40	_	0.1	00	170.1	70	100	00	M10×1.5×12	0.0	150 7	00	11	140.00 75			00	00	40	7×11×16	20	4 000	68 000	54.000	107.000	1 190	0.100	10 600	1 700	0.050	0.4	4.8
	42	9	31	90	176.1	72	120	60	(M10×1.5×14.5)	0.0	150.7	33	(15)	M6×0.75	8	11	28	23	40	/ ^ 1 1 ^ 10	20	(3 500)	00 000	54 000	127 000	1 190	2 120	10 600	1 780	8 850	2.4	4.0
	40	10 E	00	100	202.6	00	140		M10×1 5×12		175.0	07.5	10	MOX0 75	0.5	44	0.4	07.5	40	0×14×00	00	4 000	04 500	75.000	170.000	1 000	0.050	10.000	0.000	10.000	0.4	7.0
HS35EM	48	10.5	33	100	203.6	82	140	70	(M10×1.5×14.5)	0.6	175.6	37.5	(15)	M6×0.75	8.5	11	34	27.5	40	9×14×20	20	(3 500)	94 500	75 000	172 000	1 980	3 350	16 600	2 820	13 900	3.4	7.0

Notes: 1) The HS Model does not have a ball retainer. Be aware that balls fall out when the ball slide is withdrawn from the rail. 2) External appearance of stainless steel ball slides differ from those of carbon steel ball slide.

3) The basic load rating comply with the ISO standard. (ISO 14728-1, 14728-2) C₅₀: the basic dynamic load rating for 50 km rated fatigue life C₁₀₀: the basic dynamic load rating for 100 km rated fatigue life The basic static load rating shows static permissible load.
4) Parenthesized dimensions are applicable to stainless steel products.

Almotion B.V Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t+31(0) 491 777 e info@almotion.nl

www.almotion.nl | www.lineairegeleiding.nl | www.lineairegeleidingshop.nl | www.linearmotion.nl

High-Accuracy Series: HA/HS Models

4) Parenthesized dimensions are applicable to stainless steel products.
*) Standard rail mounting bolt hole for HS15 is specified as hole for M4 (4.5 × 7.5 × 8.5). Please contact us to request a different hole for M3 (3.5 × 6 × 8.5).

*) Standard rail mounting bolt hole for HS15 is specified as hole for M4 (4.5 × 7.5 × 8.5). Please contact us to request a different hole for M3 (3.5 × 6 × 8.5).